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Abstract. The use of feature selection can improve accuracy, efficiency, applicability and
understandability of a learning process. For this reason, many methods of automatic feature
selection have been developed. Some of these methods are based on the search of the features that
allows the data set to be considered consistent. In a search problem we usually evaluate the search
states, in the case of feature selection we measure the possible feature sets. This paper reviews
the state of the art of consistency based feature selection methods, identifying the measures used
for feature sets. An in-deep study of these measures is conducted, including the definition of
a new measure necessary for completeness. After that we perform an empirical evaluation of
the measures comparing them with the highly reputed wrapper approach. Consistency measures
achieve similar results to those of the wrapper approach with much better efficiency.
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1. Introduction

Feature selection help us to focus the attention of an induction algorithm in those
features that are the best to predict a target concept. Although theoretically, if
the full statistical distribution were known, using more features could only improve
results, in practical learning scenarios it may be better to use a reduced set of
features (Kohavi and John, 1997). Sometimes a large number of features in the
input of induction algorithms may turn them very inefficient as memory and time
consumers, even turning them inapplicable. Besides, irrelevant data may confuse
learning algorithms making them to reach false conclusions, leading them to get
worse results.

Apart from increasing accuracy, efficiency and applicability of induction algo-
rithms, the costs of data acquisition may also be reduced when a smaller number of
features is selected, and the understandability of the results of induction algorithm
improved.

All those advantages have made that feature selection had attracted much at-
tention by the Machine Learning community, and many feature selection methods
have been developed. In order to classify them, some categorizations (Dash and
Liu, 1997; Jain and Zongker, 1997; Langley, 1994) have been proposed. These stud-
ies identify some different parts of feature selection algorithms. According to the
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different parts identified, we propose the modularization of the feature selection
process to allow a better way of studying: the methods, their possible improve-
ments, and the development of new ones. In this paper we center our attention on
one of the identified parts, the evaluation function of a given feature set.

The evaluation functions may be used with different purposes inside the feature
selection process. We identify some of these uses of evaluation functions, and con-
sider two of them as the most common and important: choosing the best feature
set among those evaluated and guiding the search. An evaluation function that is
able to choose the best set is not necessarily the best to guide the search.

Many different evaluation functions may be used. The aim of the search is to opti-
mize the evaluation function, whether minimizing or maximizing its value. Usually
evaluation functions are measures of some quality of the feature set regarding the
data set. In this work, we make a review of those measures based on consistency
that have been used in feature selection. The review also covers other consistency
based feature selection methods not directly based on measures. In order to fill
what we consider a natural gap in consistency measures, we formally define a mea-
sure that uses previous ideas. All these measures are evaluated and compared with
the wrapper approach to feature selection.

In section 2, we start describing the proposed modular decomposition of a feature
selection algorithm, and the measures for feature sets. Section 3 studies the consis-
tency measures and reviews the consistency based feature selection methods. After
that, an empirical study of the measures is presented and explained in section 4.
And finally, conclusions and future work are described in section 5.

2. Feature selection process

The problem of feature selection can be seen as a search problem on the powerset
of the set of available features (Kohavi, 1994; Langley, 1994). The goal is finding a
subset of features that allow us to improve, in some aspect, a learning activity.

In general, we can identify some parts of feature selection algorithms with different
functionalities. Inside the process followed by feature selection methods we usually
find:

• A search method through the feature sets space

• An evaluation function of a given set of features

The schema of figure 1 shows a modular decomposition of the whole feature
selection process. It is based on the four issues (Langley, 1994) identified on feature
selection methods. The divisions are also similar to those proposed by (Dash and
Liu, 1997), with the addition of the starting point and the removal of the validation
process. Although validation is highly recommended, it is not essential, and it is
outside of the main feature selection algorithm, as it was already pointed out in the
same work.

In the search process we may identify three issues: the choice of a starting point,
the process of generating the next set to explore, and an stopping criterion. Instead
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Figure 1. Feature selection process

of considering these as three independent issues, we have grouped them because
together they define the search strategy, and they have an stronger relation among
them than with the evaluation function.

The evaluation function, given a feature subset (S) and the training data set (T),
returns a measure of the goodness of that feature set.

Evaluationfunction : S × T −→ R (1)

There is a wide range of evaluation functions used in feature selection. Evaluation
functions may be deterministic or non-deterministic, and sometimes they are prob-
abilistic estimates of a theoretical measure. The functions may exhibit different
properties, for example monotonicity. Their range will normally be in an interval
like [0, 1] or [−1, 1], it may also be just a boolean value {0, 1} indicating if the
feature set is acceptable or not as a result.

At least three main uses of the evaluation functions may be identified. First, they
are normally used as a criterion to choose, among all the explored feature subsets,
which one is the best. In this case, the feature selection process will return the
feature subset that optimizes the measure.

Another common use of the evaluation function is to guide the search process,
as it is done for example in branch and bound (Somol and Pudil, 2004; Kudo and
Sklansky, 2000), genetic algorithms (Brill et al., 1992; Kudo and Sklansky, 2000),
or the greedy search method explained below. Other methods use different search
strategies independent of the evaluation function. For example, exhaustive and
random search explore feature sets ignoring the evaluation of previous set.

Finally, we can see methods like FOCUS2 (Almuallim and Dietterich, 1994).
While having an independent (not based on an evaluation measure) search strategy
built in its generation process, FOCUS2 uses a test of consistency, that they called
sufficiency test, to decide when to stop the search. This consistency test can be
seen as a binary evaluation function, that is used by the stopping criterion.

The modular view of the feature selection process presented allow us to develop
a better understanding of feature selection methods, by getting an insight view
of them. Besides, we can investigate different approaches to each of the modules
independently of the others, as in this work we study some evaluation measures



4

based on the consistency concept using a fixed fast greedy search process. In ad-
dition, using this model, it is possible to create a great variety of feature selection
algorithms by combining different evaluation functions and search options. Finally,
the parts could possibly be reused with other purposes than feature selection, for
example, some evaluation functions are used in discretization.

Some feature selection methods do not have some of the modules identified in this
schema, but they still fit on it. For example, Relief (Kira and Rendell, 1992) does
not use a feature set evaluation function, and it does not even perform a search in
the feature set space. It simply estimates the quality of features individually, like
other feature weighting methods (Wettschereck et al., 1997), and then selects those
with weight above a user given threshold. In this schema, Relief will only have a
starting point strategy, there is no next set generation process, and the stopping
criterion is just returning the starting set. Placing Relief in this schema reveals
that it can be used as a starting point strategy for other methods.

Three different strategies to feature selection have been identified (Blum and
Langley, 1997). The filter approach, where some features are selected before and
independently of the learning algorithm. The wrapper approach, that uses the
learning algorithm inside the feature selection process. And the embedded ap-
proach, in which the learning and feature selection are interlaced in one indivisible
algorithm. All feature selection methods identify a subset of features to be used in
the learning process. Learning algorithms may exhibit different grades of tolerance
to irrelevant or redundant features, but if these algorithms do not identify which
features to use they are not feature selectors. They should not be confused with
embedded approaches to feature selection.

All the previously mentioned examples of modularized feature selection methods
belong to the filter approach. The wrapper approach (John et al., 1994) also fits
perfectly on the proposed schema. It aims at improving results by using the targeted
learning algorithm in the evaluation function. The targeted learning algorithm is
run with the candidate feature subset, and some quality measure of the results
achieved is used as the evaluation measure. In this way the bias of the learning
algorithms is taken into account by the feature selection.

While the wrapper approach has proven useful with very good results in some
circumstances, it is still interesting to study other evaluation measures for several
reasons that follows. First, an evaluation function may be more efficient in time or
resources than the learning algorithm. Second, some learning algorithms can not be
used with many features. In fact, this is one of the reasons to use feature selection.
Such algorithms may render the wrapper approach inapplicable. And finally, some
evaluation measures may be better than the wrapper approach to guide the search
process in some circumstances.

3. Consistency evaluation measures

Many different evaluation functions have been used in feature selection. A cat-
egorization of these functions according to their theoretical basis is proposed in
(Dash and Liu, 1997). The categories identified are: distance measures, informa-
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tion measures, dependence measures, consistency measures and classifier error rate
measures.

This work is centered on consistency measures. The idea behind these measures
is that, in order to predict the concept or class value of its instances, a data set with
the selected features alone must be consistent. That is, no two instances may have
the same values on all predicting features if they have a different concept value.
Therefore, the goal is equivalent to select those features that better allow to define
consistent logical hypothesis about the training data set.

As the higher the number of features, the more consistent hypothesis that can be
defined, the requisite, of a data set having consistency, is usually accompanied with
the criterion of finding a small feature set. In any case, the search for small feature
sets is the common goal of feature selection methods, so this is not a particularity
of consistency based methods.

3.1. Basic consistency measure

The most basic of these measures is the one that simply guess if the training data
set is consistent or not with the selected features. Its output is just a boolean
value. This measure was first used in FOCUS (Almuallim and Dietterich, 1991),
as what they called the sufficiency test. The search process of FOCUS, or the
optimized version, FOCUS2 (Almuallim and Dietterich, 1994), uses this measure
to stop the search in the first set of features that this measure evaluates to true.
The algorithms perform the search in a way that guarantees finding a minimal set
of features that make the training set consistent. This implements what they called
the min-features-bias.

While good results had been achieved using the simple consistency measure, it
has several limitations. First, consistency check can only be used directly with
discrete features. Developing an extension of FOCUS algorithm to deal with these
features is not straight forward and many approaches are possible. Some extensions
are CFOCUS (Arauzo Azofra et al., 2003a) to handle continuous features, and
FCFOCUS (Arauzo Azofra et al., 2003b) to include expert knowledge in the form
of linguistic features. Second, FOCUS has low noise tolerance, just the change of
a single value may turn the set inconsistent and force to add another feature, that
may be redundant or even irrelevant. And third, the measure itself is not able to
guide the search, it is necessary an additional strategy, like min-feature-bias, or
any other that using the data may be able to direct the search in a profitable way.
The consistency measures that are described in the following subsections aim at
improving noise tolerance and providing a mean to guide the search by returning a
degree of consistency.

All the consistency measures studied can emulate this measure by converting
their output to a boolean value. When the data set is consistent the measures
always return a given value, usually 1, and a different value otherwise. In this way,
it is possible to implement FOCUS with any consistency measure, but with some
advantages, for example, being able to stop before reaching complete consistency
to handle noise.
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3.2. Liu’s consistency measure

Liu, Motoda and Dash (Liu et al., 1998) proposed the first consistency measure
defined independently of a search process in feature selection. More recently they
have tested the measure with several search processes (Dash and Liu, 2003).

This measure uses an inconsistency rate that is computed by finding all examples
(patterns) with the same values in all features (not considering the class feature),
and counting all matching examples minus the largest number of examples of the
same class for each group. The rate is computed dividing the sum of these counts
by the number of examples in the data set.

Grouping the examples that match the same values for all the selected features,
if we call inconsistent examples to those that do not belong to the majority class of
their group, Liu’s measure can be expressed with the equation (2), as the proportion
of these inconsistent examples in the total number of examples.

Inconsistency =
number of inconsistent examples

number of examples
(2)

The group of these measures is usually refereed to as consistency measures, though
what this measure, and the later described IEP, really measure is inconsistency. In
order to compare measures and work with them indistinctly it is necessary to estab-
lish the relation between consistency and inconsistency. Since it seems reasonable
to think of consistency degree as the opposite value of inconsistency, we define the
consistency as:

Consistency = 1 − Inconsistency (3)

Some search algorithms, like Branch & Bound, require the measure being mono-
tonic to get optimal or better performance. The monotonic property requires that
if Si, Sj are feature sets and Si ⊂ Sj , then M(Si,D) ≤ M(Sj ,D), where M is the
measure and D a data set. As well as all the other consistency measures included
in this paper, this measure presents the monotonic property.

We can find an intuitive meaning for this measure. It could be seen as the
classification accuracy that a memory classifier (also known as table classifier, or
RAM, these are classifiers that keep all patterns and classify with the most frequent
class for each pattern) will achieve on the data set with the given features. In other
words, the probability that an example of the training data set would be correctly
classified.

The computation of this measure could be done very fast using hash tables. A
process to compute the measure on an example data set is shown in figure 2.
First, the data set is projected to use only the features to evaluate. After that, all
examples are introduced on a hash table. The elements introduced are the class
values using as index the values of selected features. In this way, all examples are
grouped according to the value of their selected features. Finally, the number of
examples that do not belong to the majority class of their group are counted. It is
easy to see that the efficiency in the average case of this process is in O(n).
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Liu’s measure is not defined for data sets with continuous features, but it could
be used in combination with some discretization method, as was suggested by its
authors. In a previous step the data set is discretized, and then the feature selection
is applied. Once the features are selected, the learning algorithm may use the
discretized features or their continuous version from the original data set. The rest
of consistency measures also lack of a reasonable direct application on continuous
data. Therefore, in the empirical study, we will use the related procedure to test
the application of these measures on continuous data sets.

3.3. Rough sets consistency measure

The following measure comes from the Rough Set Theory (Pawlak, 1991; Ko-
morowski et al., 1998; Polkowski and Skowron, 1998), it is described in (Pawlak,
1991)(chapter 7.8). The measure has been used in discretization (Chmielewski and
Grzymala-Busse, 1996), and it has even been compared with Liu’s measure (Tay
and Shen, 2002) in a discretization algorithm, but we have not found any previous
work in which this measure had been used to guide a feature selection search.

We will just introduce the essential concepts of Rough Set Theory to describe
the consistency measure. Let U denote the universe, i.e. the set of all examples
from the data set. Let F denote the set of all features, and S ⊆ F some selected
features. The indiscernibility relation is defined as:

IND(S) = {(x, y) ∈ U × U : ∀f ∈ S, f(x) = f(y)} (4)

This equivalent relation partitions U into equivalent classes, and the partition
(set of equivalent classes) will be denoted U/IND(S).

For any subset of instances X ⊆ U , for example the set of examples belonging to
a given class, the S lower approximation of X is defined by:

SX =
⋃

{Y ∈ U/IND(S) : Y ⊆ X} (5)

If we take X as the set of examples of a class, SX represents those examples
that could be consistently identified as members of that class using S features.
We can repeat this for every class and define the positive region with the following
equation, where D denotes the set of dependent features, usually only one attribute
identifying the class of the example.

POSS(D) =
⋃

X∈U/IND(D)

SX (6)

The degree of consistency is given by the proportion of these consistently clas-
sifiable examples in the total number of examples. The measure is shown in the
following equation:

γ(S,D) =
|POSS(D)|

|U |
=

∑

X∈U/IND(D)

|SX|

|U |
(7)
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The efficiency is the same as the one of Liu’s measure. This measure can be
computed with a similar process, but counting only those examples in groups where
all examples belong to the same class.

While the other measures deal with what is left in a data set to be consistent,
this measure looks to what is consistent. We can also think of these measure as
more strict than Liu’s, as those examples of the majority class in each group are
not counted, if there is just one example from other class in the same group of
indistinguishable examples.

As previously mentioned also this measure presents the monotonic property. It
can be easily seen with the proof outlined in equation (8).

∀c ∈ U/IND(S ∪ {f})∃ĉ ∈ U/IND(S) : c ⊆ ĉ −→

∀X ∈ P(F ), SX ⊆ S ∪ {f}X −→ γ(S,D) ≤ γ(S ∪ {f},D) (8)

3.4. Inconsistent example pairs measure

A consistent data set turns inconsistent when it happens to contain two examples
with different class or concept value but the same values in all features. These two
examples form an inconsistent example pair. In this way, a data set can be said
to be more inconsistent, or that it shows a smaller degree of consistency, as more
inconsistent example pairs appear on the data set. The measure we propose here
uses the count of these pairs as an inconsistency measure.

The inconsistent example pairs have also been referred to as unsolved conflicts.
In FOCUS terminology, a conflict is a pair of examples with different concept value.
When the pair of examples that form a conflict have different values on some feature,
the conflict is considered to be solved, and unsolved otherwise.

The unsolved conflict count has been used as search guide in Simple Greedy
(Almuallim and Dietterich, 1994), and Set Cover (Dash, 1997), but to our knowl-
edge it has never been defined as an independent measure, neither compared with
other measures. We consider important to define a measure based on the count of
inconsistent example pairs to fill a natural gap in consistency measures.

The count of inconsistent example pairs lies in a range between 0, when the
data set is consistent, and the number of pairs of examples with different class,
when no features are selected and so no pair may be distinguished. This makes
the theoretical range of the measure to be the interval [0,+∞]. Instead of using
this count directly as the measure of inconsistency, it seems reasonable to make it
proportional to the data set, in order to make the measure comparable among data
sets and bounded on a limited interval.

Table 1 shows some values of the measures. First line shows the count of inconsis-
tent example pairs alone. The second shows the proportion of inconsistent example
pairs on the number of pairs with examples of different class. The next option
considered is the proportion of inconsistent example pairs on the total number of
pairs in the data set. Final rows shows the values for Liu’s measure and rough sets
consistency measure as a mean of comparison.
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Table 1. Bounds and interesting values of the inconsistency measures

Measure General Given a Data Set(DS) Simplest DS Hardest DS
All feat. ∅ ∅ ∅

Count of IEP [0, +∞] [IIP, diffCl] 0 Pairs
Count of IEP

No. pairs of diff. Class
[0, 1] [ IIP

diffCl
, 1] 0

0
(Indet.) 1

Count of IEP
No. pairs

[0, 1] [ IIP
Pairs

,
diffCl

Pairs
] 0 1

Liu’s measure [0, 1[ [ IIE
N

, 1 − Majority] 0 N−1
N

∼ 1
Rough Sets [0, 1] [1 − γ, 1 (0 if |Cl| = 1)] 0 1

DS = Data Set. IIE = No. Insolvable Inconsistent Ex.
N = |DS| (No. examples). IIP = No. Insolvable Inconsistent example Pairs.

Cl = Class feature. Pairs = Total no. pairs in data set (
N(N−1)

N
).

γ = Rough Sets Consistency. diffCl = No. pairs of different class.

In the general case the two options are bounded in the [0, 1] interval which is an
advantage over the count alone. As all the measures are monotonic, the range of
a measure for a given data set will lie in the interval delimited by the values of
the measure for the set of all features and the empty set. The specific minimum
value is shown for each measure, but all of them agree to be 0 if the data set is
consistent considering all features, what is not the case in presence of noise. The
maximum value for the option dividing by the different class pairs is 1, using in this
way the widest range possible in [0, 1] for all data sets. However the other option
and Liu’s measure provide a value that may be used as a measure of the a-priori
(before selecting any feature) inconsistency or the inherent difficulty of a data set.
In the case of Liu’s consistency, this value is the well known Majority concept of a
data set, i.e. the frequency of the most common class. Majority is commonly used
as a minimum accuracy threshold acceptable for a classifier. In order to illustrate
this, the values for two extreme cases of data sets are shown. The simplest data set
is one with all instances belonging to the same class. It is consistent itself and there
is no need to select any features, so it is reasonable to assign it a 0 as inconsistency
degree. All measures satisfy this, except the one dividing by different class pairs
that is undetermined and to be in accordance with its value for any given data set it
should be defined to 1. On the other side, a data set in which every example belong
to a different class will probably be more harder to find consistent hypothesis. This
is the named hardest data set on the table, and all measures assign it the maximum
value.

For a given data set, the difference between the three options is just a linear trans-
formation that make the measures lie on the different identified intervals. Therefore
the effects in guiding a search, or selecting a feature set, would be the same, but
we consider the last option the most appropriate, as it allows the measure to com-
pare inconsistency degrees between different data sets. The measure is shown in
equation (9).

Inconsistency =
number of inconsistent example pairs

number of example pairs
(9)
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The inconsistent example count measure is monotonic. It could be easily deduced
from the following. An example pair that is consistent thanks to a feature in Si will
still be consistent with Sj as it is a superset. For this reason, the number of incon-
sistent example pairs could only decrease when features are added, so consistency
measure will always be equal or greater.

Another interesting theoretical property of this measure was pointed out in (Dash
and Liu, 1997). This measure, together with the simple greedy search algorithm
that we will describe in the empirical study, resemble Johnson’s approximation
algorithm to Set Cover problem. In this way, it is guaranteed that a feature set
with no more than O(MlogN) features will be found, where N is the number of
features in the data set and M is the size of the smallest consistent feature set.

An intuitive idea of this measure may be achieved thinking that it represents the
probability that, on a given data set, with the selected features, we are able to
distinguish two examples randomly chosen.

The fact that this measure works with the combination of all example pairs should
not make us think that its computation is efficiently costly. In fact, its time and
space efficiency in the average case can be as low as O(n). The description of an
algorithm using hash tables follows. An example of its application is shown in figure
2.

1. #Algorithm to compute inconsistent example pairs measure

2. ConsistencyMeasure(Dataset, SelectedFeatures)

3. Hash = ∅

4. For each Example in Dataset:

5. Insert class(Example) into Hash at πSelectedFeatures(Example)

6. InconsistentExamplePairs = 0

7. For each ClassList in Hash:

8. InconsistentExamplePairs += number of all possible pairs

9. of two different class values in ClassList

10. n = |Dataset|

11. return 1 − InconsistentExamplePairs
n(n−1)

2

Hash is a hash table in which every element included has a list (initially empty)
of class values.

3.5. Other consistency based methods

We have aimed our study to those methods where measures can be separated of the
search process. Nevertheless, in this section, we want to mention other consistency
based feature selection methods that do not define independent measures. They
rather define elaborated processes based on logic rules or heuristics, in all cases,
searching for a feature set that allows consistency. Anyway, we would like to point
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Figure 2. Fast computation of Inconsistent Example Pairs and Liu’s measures

out that, although an extensive search has been performed, this is not an exhaustive
list. Since there are methods that could be used in feature selection, though they
are not designed with feature selection in mind, we could have missed some of them.

Schlimmer (Schlimmer, 1993) describes an algorithm to induce logical determina-
tions using the minimum possible number of features, that is in fact an embedded
feature selection.

MIFES (Oliveira and Sangiovanni-Vicentelli, 1992) is an algorithm that can per-
form from feature selection, passing through construction of derived features, to
constructive induction of the concept by creating a single feature that describes it.
They present the concept of covering all the example pairs to achieve consistency
with an intuitive matrix representation.

A recent approach (Boros et al., 2000) develop a logical analysis of data that
include an embedded feature selection. It is based on the consistency concept
and set covering, and it can handle with the proposed binarization discrete and
numerical features, as well as imperfect data with missing values or errors.

There are some methods based on Rough Sets Theory, like (Modrzejewski, 1993).
A summary of the use of this theory to assess feature significance can be found in
chapter 7.1 of (Komorowski et al., 1998).

Zhong et al. (Zhong et al., 2001) use the Rough Sets Consistency measure mul-
tiplied by a factor to select features that generates simpler rules.

4. Empirical study

Our goal is to develop a rather wide empirical study, so we have considered clas-
sification problems as well as approximation problems. The type of values present
in real problems are varied, discrete and continuous, so we evaluate the application
of the measures in data sets with discrete features, continuous features and both
mixed. The data sets chosen for the evaluation cover all the possible combinations
between the problem and data types. To simplify the evaluation the data sets are
joined in three groups: classification with discrete features, classification with con-
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Table 2. Data sets

Data set No. examples No. features Prob. type Features

house-votes84 435 17 Classification Discrete
led24 1200 25 Classification Discrete
lung-cancer 32 57 Classification Discrete
lymphography 148 19 Classification Discrete
mushrooms 8416 23 Classification Discrete
promoters 106 59 Classification Discrete
soybean 307 36 Classification Discrete
splice 3190 62 Classification Discrete
zoo 101 18 Classification Discrete

anneal 898 39 Classification Mixed
breast-cancer 286 10 Classification Mixed
bupa 345 7 Classification Continuous
credit 690 16 Classification Mixed
ionosphere 351 33 Classification Mixed
iris 150 5 Classification Continuous
pima 768 9 Classification Continuous
post-operative 90 9 Classification Mixed
wdbc 569 21 Classification Continuous
wine 178 14 Classification Continuous

auto-mpg 398 9 Regression Mixed
glass 214 10 Regression Continuous
housing 506 14 Regression Continuous
prostate 97 9 Regression Continuous
servo 167 5 Regression Discrete

tinuous or mixed features, and regression with any type of features. In table 2 the
data sets used for each group are described. All data sets are available from the
UCI machine learning repository (Hettich and Bay, 1999).

A discretization method is necessary to apply the consistency measures to con-
tinuous data and regression problems. Many discretization methods are available,
but testing feature selection combined with all of them is outside the scope of this
paper. Besides, we want to test feature selection without the interfering effect of
elaborated discretization methods, that sometimes may even perform feature selec-
tion on themselves (Liu and Setiono, 1997). Therefore we will use a method that
do not take into account feature interdependencies and behaves equal with all of
them. The method used is three intervals equal frequency discretization, a prac-
tical and commonly used method that performs better that equi-distant interval
discretization (Liu et al., 2002). As a result of this, probably better results might
be achieved using different numbers of intervals, or more elaborated discretization
methods, specifically selected for each data set.

It should be pointed that discretization is only used in order to obtain the measure
value and select features. It is not used on the learning algorithms, with the purpose
of allowing them to get the most information possible from data.

The prediction algorithms we have used are the following three: the Naive Bayes
classifier; an inducer of classification and regression trees, post-pruned using m-
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error estimate pruning method with parameter m set to 2.0, in order to achieve
better generalization; and the kNN algorithm using 21 neighbours. We have used
the implementations of these algorithms from the Orange data mining software
(Demsar and Zupan, 2004). More details about the algorithms, as well as the
source code, may be found on their documentation and web page.

4.1. Measures choosing a feature set

At first, we have studied how the measures behave in the selection of the best
subset of features. This is one of the common uses we identified for the measures in
the section describing the feature selection process. The idea is that high values of
the measure, for a set of features, should correspond with high values of prediction
accuracy.

The purpose of this experiment is to compare the values of the measures with
the accuracy achieved using a learning method, using the same feature set. It is
not possible to evaluate all the subsets of features, at least with most of the data
sets we are using. This is because of the large number of possible combinations of
features. For this reason, we have taken a sample of some feature sets from the
whole powerset of all features. To have a representation of the whole space -as if we
took the sets randomly there would be a much higher probability of taking medium
sized sets- we have taken a fixed number of random sets of every size. The fixed
number of sets is chosen so that the total number of sets is over 100. As there
is only one feature set with size equal to all features, we have not taken this size
into the total count to avoid including the same set multiple times, but we have
always included the set with all features, because we think it is important to have
it included in the comparative.

To have good estimations of the accuracy of the algorithms ten fold cross-validation
has been used for every set evaluated. The result shown is the average of the ten
folds. Accuracy is measured as the percentage of correct classification in the classi-
fication problems, and as the mean squared error(MSE) in the regression problems.

As an illustration of this experiment, in figure 3 there is a scatter plot of the eval-
uation measures versus the classification accuracies, on the soybean classification
problem. It can be seen how the relation among the accuracy of the different clas-
sifiers is mostly linear, having all of them a similar behaviour with each feature set
given. The relation between Liu’s, RSC measure and the three classifiers accuracy
is nearly linear, showing that these measures are a good predictors for the accuracy
of a given feature set. In third place, the inconsistent example pairs measure does
not show a strong linear relation with accuracies, but there is a tendency to give
high values on the feature sets that perform well on classification.

Table 3 shows the correlation factors between the measures and the learning
methods accuracy. The results are shown for all the data sets considered in the
three groups, as well as the mean of correlations for every group. The better values
for correlation factor are those near 1 in the classification problems, as we expect
positive correlation. On the other side, we expect negative correlation on regression
problems, as the better values for MSE are the smaller ones.
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Figure 3. Scatter plot of measures and classification accuracy for soybean data set
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Table 3. Correlations

Data set LIU IEP RSC
NB Tree kNN NB Tree kNN NB Tree kNN

house-votes84 0.95 0.97 0.97 0.89 0.87 0.91 0.58 0.73 0.72
led24 0.85 0.82 0.81 0.49 0.48 0.49 0.86 0.83 0.82
lung-cancer 0.31 0.06 0.33 0.17 -0.01 0.22 0.36 0.16 0.37
lymphography -0.25 -0.54 0.01 -0.22 -0.36 -0.07 -0.10 -0.42 0.16
mushrooms 0.90 0.99 0.99 0.72 0.82 0.86 0.88 0.93 0.93
promoters 0.56 0.34 0.63 0.49 0.33 0.61 0.48 0.39 0.50
soybean 0.98 0.98 0.97 0.76 0.76 0.75 0.96 0.96 0.96
splice 0.65 0.63 0.74 0.37 0.35 0.43 0.64 0.60 0.72
zoo 0.99 0.99 0.98 0.88 0.88 0.90 0.90 0.91 0.88
Average (Discrete) 0.66 0.58 0.71 0.51 0.46 0.57 0.62 0.57 0.67

adult 0.72 0.91 0.95 0.44 0.54 0.57 0.48 0.43 0.58
anneal 0.90 0.85 0.91 0.56 0.52 0.66 0.89 0.87 0.91
breast-cancer 0.61 -0.33 0.57 0.4 -0.15 0.43 0.40 -0.54 0.47
bupa 0.86 0.71 0.64 0.66 0.58 0.64 0.83 0.62 0.60
credit 0.92 0.86 0.87 0.72 0.63 0.67 0.78 0.65 0.72
ionosphere 0.82 0.85 0.24 0.63 0.7 0.42 0.87 0.78 0.29
iris 0.98 0.99 0.99 0.92 0.92 0.95 0.71 0.73 0.75
pima 0.80 0.62 0.82 0.65 0.27 0.65 0.71 0.63 0.72
wdbc 0.92 0.92 0.95 0.83 0.82 0.86 0.83 0.84 0.86
wine 0.97 0.96 0.96 0.78 0.77 0.77 0.91 0.91 0.89
Average (Continuous) 0.85 0.73 0.79 0.66 0.56 0.66 0.74 0.59 0.68

auto-mpg — 0.08 -0.50 — 0.06 -0.31 — 0.25 -0.5
glass — -0.71 -0.71 — -0.67 -0.80 — -0.64 -0.59
housing — -0.94 -0.91 — -0.71 -0.83 — -0.72 -0.61
prostate — -0.03 -0.77 — 0.15 -0.71 — 0.21 -0.59
servo — -0.71 -0.63 — -0.22 -0.12 — -0.59 -0.44
Average (Regression) — -0.46 -0.70 — -0.28 -0.55 — -0.30 -0.55
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We can see that there is generally high correlation in the classification problems,
except lymphography. Regression gets good correlation when using kNN learner,
but there are many cases of very low correlation using regression trees.

With just a few exceptions, the correlation of Liu’s measure with learners accuracy
is a bit higher than the correlation between Rough Sets Consistency measure (RSC)
and learners. Inconsistent Example Pairs measure (IEP) shows a lower correlation,
indicating the relation is less linear as we have seen in the scatter plot.

Obviously, the wrapper approach, which uses the accuracy of the learning method
as measure, will get the best results in all cases with a correlation factor of 1.

However, in order to select a good feature set, it is not necessary to have linear
correlation with accuracy. The condition that the measure should agree with is
that for any two feature sets f1, f2, if their associated accuracies are a1 < a2 the
measures of feature sets should be m1 < m2, and we can imagine that having this
condition strictly is only important in those feature sets with higher accuracies, as
these are the sets that are going to be selected at the end of the search. Therefore
this is complex to evaluate, and it seems reasonable to test the measure behavior
in a complete application process to get a complete idea of its performance.

Besides, the correlation does not say anything about the capacity of the measure
to guide the search. To overcome the limitations of just studying the measures
alone, we have tested the measures in a complete environment, with a search process
and classification with the feature set chosen.

4.2. Measures guiding search

We have chosen to utilize a greedy search process. This allows us to explore the
potential use of the measures guiding the search process. The search process used is
similar to Simple Greedy (Almuallim and Dietterich, 1994), Hill-climbing (Kohavi
and John, 1997), and Set Cover based (Dash, 1997; Dash and Liu, 2003) already
used in feature selection, and commonly used in statistics.

The start point is the empty set. The idea is, given a feature set, to explore all
the resulting sets of adding one of the available features, and continue with the
one that gets best results on evaluation function. The stopping criterion is to stop
when we reach the set with all features. At the end, the feature set visited with
the best measure is returned.

The time efficiency of the search process is O(n2), where n is the total number
of features. This is quite reasonable for most problems. It may also be speeded up
with a more restrictive stopping criterion. For example, it can be stopped when,
at a given step, no increase might be achieved on the evaluation function.

We have applied the feature selection process using each of the measures with
the three learning algorithms. This process has been repeated ten times in order
to apply ten fold cross-validation, with feature selection performed independently
on each fold. The results shown are the averages of the accuracy achieved on the
ten folds.
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Table 4. Accuracy achieved with the different methods

Data set Naive Bayes Tree kNN

No Liu IEP RSC Wr No Liu IEP RSC Wr No Liu IEP RSC Wr

house-votes84 90.1 91.5 92.9 93.6 95.4 96.3 96.1 96.3 96.6 94.7 93.8 94.7 94.0 94.9 95.9
led24 75.8 76.0 55.0 76.1 75.8 71.9 72.5 50.2 71.5 75.1 62.1 66.1 42.8 65.4 75.8
lung-cancer 55.8 50.0 49.2 58.3 46.7 38.3 65.8 44.2 55.8 48.3 46.7 55.8 39.2 58.3 46.7
lymphography 47.1 45.9 46.5 43.2 48.5 41.9 46.4 45.1 47.3 47.2 43.2 49.2 45.1 46.0 45.8
mushrooms 99.7 99.3 99.0 99.5 100 100 99.9 100 100 100 100 99.9 100 100 100
promoters 86.8 84.7 86.0 88.6 85.7 78.6 84.1 80.5 86.0 79.4 83.7 89.6 82.2 89.6 87.6
soybean 91.2 78.2 73.0 82.8 88.0 89.2 79.7 70.0 85.3 89.5 85.3 70.0 60.9 75.9 87.6
splice 95.6 94.3 67.7 85.7 95.8 93.8 94.1 66.8 85.2 94.1 83.5 86.9 65.6 79.6 89.1
zoo 92.0 97.0 95.0 96.0 96.0 96.0 95.0 94.0 95.0 95.0 94.1 83.1 86.1 85.1 92.1

anneal 95.9 94.4 92.2 90.9 96.3 96.4 96.3 93.7 94.0 97.1 90.7 92.8 91.1 89.1 97.6
breast-cancer 74.8 74.5 74.8 74.5 73.4 68.9 68.6 65.0 64.6 73.1 71.6 72.7 73.1 74.4 72.0
bupa 68.7 68.7 68.7 68.7 66.1 61.7 62.9 65.8 65.8 62.6 63.8 63.8 64.3 64.3 67.9
credit 86.2 84.5 86.4 85.5 83.9 84.1 84.4 85.4 85.7 83.9 86.7 84.9 85.2 84.9 86.2
ionosphere 90.9 91.5 91.5 89.5 92.0 93.7 90.0 93.5 89.5 92.3 82.4 87.2 85.2 87.2 89.5
iris 96.7 96.7 96.7 96.7 94.7 96.0 95.3 96.0 96.0 94.7 97.7 96.7 97.7 97.7 95.3
pima 76.2 76.2 76.2 76.2 76.8 71.2 71.2 71.2 71.2 67.1 74.7 74.7 74.7 74.7 74.0
post-operative 63.3 63.3 66.7 66.7 70.0 61.1 57.7 63.3 63.3 64.4 68.9 67.8 71.1 71.1 65.6
wdcb 95.4 95.1 94.6 94.0 96.7 94.2 93.0 93.3 92.5 94.0 97.2 96.0 96.3 96.1 96.5
wine 98.9 97.2 97.2 97.2 96.0 92.1 94.4 96.1 93.8 93.2 96.6 97.2 96.1 96.6 97.7

auto-mpg — — — — — 49.0 48.5 48.5 48.5 15.0 10.5 17.6 17.6 17.6 10.3
glass — — — — — 1.75 2.03 1.67 1.87 1.89 1.13 1.13 1.13 1.13 1.20
housing — — — — — 22.7 22.2 21.5 22.0 21.2 23.7 22.4 22.0 22.7 13.3
prostate — — — — — 1.32 1.33 1.33 1.39 1.42 0.92 0.93 0.87 0.87 0.80
servo — — — — — 0.77 0.77 0.77 0.77 0.77 1.14 1.14 1.14 1.14 1.24

The wrapper measure uses internally another process of ten fold cross-validation
to evaluate accuracy of a learner with the feature set in consideration. This is
obviously performed on the training part of the current fold of the main process.

Table 4 shows the accuracy results grouped by the learning algorithms with which
the feature selection is combined, and the different data set groups. As the Naive
Bayes learner can not be applied to regression problems its cells are left empty. In
table5 the number of features selected are shown. The first column indicates the
number of features of the data set, that may result convenient to compare. As the
consistency measures are independent of the learning algorithm, their number of
features is shown in common for all learners, while the number of features selected
by the wrapper approach is shown for every learner.

The wrapper approach obtains only slightly better accuracy results than consis-
tency measures on average, around 1-2% greater accuracy in classification problems.
Nevertheless, this is not a very significative difference, and it is also interesting to
mention that consistency measures achieved greater accuracy on some data sets.
Therefore consistency measures are a reliable competitor of the wrapper approach.
Both approaches, the wrapper, and filtering with consistency measures, have im-
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Table 5. Number of features used in each method

Data set NB/Tree/kNN NB Tree kNN
No LIU IEP RSC Wr Wr Wr

house-votes84 16 10.6 9.3 10.3 3.1 8.3 4.2
led24 24 17.9 17.3 17.8 10.3 8.0 8.5
lung-cancer 56 4.3 4.1 5.1 14.0 4.9 12.9
lymphography 18 8.2 7.9 8.5 5.3 5.5 5.3
mushrooms 22 4.8 4.0 5.0 12.9 4.8 4.8
promoters 57 4.2 4.0 4.0 14.0 10.6 26.8
soybean 35 10.1 8.7 12.0 20.0 14.8 20.5
splice 60 10.6 9.6 10.3 35.5 16.1 6.8
zoo 16 4.9 4.9 5.1 7.2 5.2 11.0

anneal 38 23.1 13.4 15.7 27.6 19.0 15.7
breast-cancer 9 8.0 8.2 8.4 3.9 2.8 5.4
bupa 6 6.0 6.0 6.0 4.0 4.6 4.0
credit 15 11.4 10.6 11.1 9.1 5.9 7.0
ionosphere 32 9.7 8.9 9.0 10.9 15.5 4.3
iris 4 3.1 4.0 4.0 2.4 1.9 1.6
pima 8 8.0 8.0 8.0 4.3 3.6 5.6
post-operative 8 7.9 7.9 7.9 0.5 1.7 2.1
wdcb 20 9.1 9.6 9.2 9.9 7.1 10.8
wine 13 5.2 5.3 5.5 6.0 4.9 6.3

auto-mpg 8 2.9 2.9 2.9 — 5.4 5.1
glass 9 8.8 8.8 8.8 — 4.6 4.7
housing 13 12.0 11.8 12.6 — 8.8 6.8
prostate 8 7.2 7.2 7.3 — 3.3 5.3
servo 4 4.0 4.0 4.0 — 3.5 3.5



19

proved accuracy of learners on many data sets, confirming in this way the usefulness
of feature selection.

Comparing Inconsistent Examples Pairs (IEP) measure with Liu’s measure we
can see that they get very similar accuracy results, except in some cases like the
splice data set, where IEP reduces the number of features by one more than Liu’s
measure and get much worse accuracy.

The results are varied across the data sets, as we have seen there are some data
sets in which there are significative differences between measures. However taking
into account all data sets we can not reach any general affirmation about any of
them being definitely better than the others. Performing a paired t-test on the
differences for each pair of measures, in each of the three groups of data sets, shows
that a significative difference in accuracy can not be found, for none of the learning
algorithms. This is because the differences mentioned are in different sense and
there are many data sets where measures performs very similarly. Therefore we
can conclude that no significative difference have been found among the measures
in our experiments. To reach a more general conclusion it would be necessary to
use much more data sets.

Another important point in feature selection methods is the number of features
they select. The consistency measures, and specially IEP, achieve considerably
greater reductions than the wrapper approach on the classification problems with
discrete data. For example in promoters and mushrooms data set the number
of features is reduced by the third while accuracy is kept in a similar level to
that achieved by the wrapper approach. On classification with continuous data
problems, the differences are not so high, with the wrapper approach reducing
more than the others. Finally, on regression data sets, the wrapper approach show
the best results not only on feature reduction but also in accuracy.

The running time of the different algorithms has also been recorded, but we do not
consider appropriate to use these times to strictly speak about differences among
them because they have been obtained with different external factors. One of these
factors is that the learning algorithms are implemented in C++, meaning this
that the wrapper measure is compiled, while the other measures are implemented
in Python which is an interpreted language. In this way, the implementation is
supposed to give an advantage to wrapper measure. Nevertheless, in general, we
can say that all measures perform quickly on small data sets. However, as expected
by the theoretic efficiency, running time of discrete measures is growing slowly with
data set size, while the wrapper approach time becomes two or three orders of
magnitude greater on large data sets.

5. Conclusions

We have presented a survey on the use of data set consistency measures for feature
selection. To begin with, the feature selection problem and their main applications
are reviewed. After that, based on previous work categorization of feature selection
methods, we have introduced a modular decomposition of feature selection process
illustrating its relation with some well known methods. We hope this modular view
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can provide new views for researching in feature selection, as well as a skeleton for
possible new methods. Then, our study is centered on the evaluation function, one
of the modular part of the decomposition, and more precisely on those measures
based on consistency.

The state of the art of consistency measures for feature selection is revised, de-
scribing the three identified measures: the monotonic consistency measure proposed
by (Liu et al., 1998) for feature selection, the generic consistency measure from
Rough Sets Theory, and one measure defined from the ideas of some previous con-
sistency based feature selection methods, that we consider necessary to define as a
measure to fill a natural gap in this field. All these measures are carefully studied
and compared, considering their properties and interpretation. We have identified
their limit values and their use comparing data sets, revealing the relation between
Liu’s measure and the majority concept. We have also presented a review of other
feature selection methods based on consistency as they are the basis of measures.
Finally, an empirical comparison of these measures and the wrapper approach have
been performed, in all their aspects: accuracy, reduction of the number of features
and efficiency.

We have shown that consistency measures can be very useful in many feature se-
lection problems for the following reasons. First they can achieve similar accuracy
results than the wrapper approach, while being much more efficient. Second, they
can achieve greater feature reduction. And finally, being independent of the clas-
sifier used, they may be more practical in some circumstances, for example using
various algorithms on the same problem, or assessing experts. For these reasons,
we can conclude that it stills interesting the use of the filter approach to feature
selection. When efficiency is a requirement, we have shown that consistency based
filter approach can improve the accuracy of the learning process. In the other case,
when wrapper approach could be applied, filters could lead to superior results in
some circumstances.

The three consistency measures compared achieve pretty similar results, thus
making a choice among them is difficult. In case we are interested in greater feature
reduction on a classification problem, we may choose Inconsistent Example Pairs
measure, while if we are interested in maximal accuracy Liu’s measure may be a
better choice. As the three measures are very efficient, it also possible to apply all
of them and to take the one which fits best to our problem, probably in the same
time that it would take to run other measures.

The results suggest that consideration of continuous features and regression prob-
lems could be deeply studied to improve accuracy, because while the consistency
measures provide a much more efficient way of selecting features than the wrapper
approach, the accuracy is slightly worse using the former approach. There is an
open field of research in the combination of feature selection and discretization.
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